Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543522

RESUMEN

Injurious behaviors (i.e., aggressive pecking, feather pecking, and cannibalism) in laying hens are a critical issue facing the egg industry due to increased social stress and related health and welfare issues as well as economic losses. In humans, stress-induced dysbiosis increases gut permeability, releasing various neuroactive factors, causing neuroinflammation and related neuropsychiatric disorders via the microbiota-gut-brain axis, and consequently increasing the frequency and intensity of aggression and violent behaviors. Restoration of the imbalanced gut microbial composition has become a novel treatment strategy for mental illnesses, such as depression, anxiety, bipolar disorder, schizophrenia, impulsivity, and compulsivity. A similar function of modulating gut microbial composition following stress challenge may be present in egg-laying chickens. The avian cecum, as a multi-purpose organ, has the greatest bacterial biodiversity (bacterial diversity, richness, and species composition) along the gastrointestinal tract, with vitally important functions in maintaining physiological and behavioral homeostasis, especially during the periods of stress. To identify the effects of the gut microbiome on injurious behaviors in egg-laying chickens, we have designed and tested the effects of transferring cecal contents from two divergently selected inbred chicken lines on social stress and stress-related injurious behaviors in recipient chicks of a commercial layer strain. This article reports the outcomes from a multi-year study on the modification of gut microbiota composition to reduce injurious behaviors in egg-laying chickens. An important discovery of this corpus of experiments is that injurious behaviors in chickens can be reduced or inhibited through modifying the gut microbiota composition and brain serotonergic activities via the gut-brain axis, without donor-recipient genetic effects.

2.
Poult Sci ; 102(12): 103162, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924580

RESUMEN

The aim of this study was to examine effects of various daylight exposure during the 24-h light-dark (L-D) cycle on growth performance, skeletal health, and welfare state in broilers. Environmental photoperiod and related circadian clock, the 24-h L-D cycle, are important factors in maintaining productive performance, pathophysiological homeostasis, and psychological reaction in humans and animals. Currently, various lighting programs as management tools for providing a satisfactory environmental condition have been used in commercial broiler production. Four hundred thirty-two 1-day-old Rose 308 broiler chicks were assigned to 24 pens (18 birds/pen). The pens were randomly assigned to 1 of 4 thermal and lighting control rooms, then the birds were exposed to (n = 6): 1) 12L, 2) 16L, 3) 18L, or 4) 20L at 15 d of age. Lighting program effects on bird body weight, behavioral patterns, bone health, and stress levels were evaluated from d 35 to d 45, respectively. The birds of 12L as well as 16L groups, reared under short photoperiods close to the natural 24-h L-D cycle, had improved production performance, leg bone health, and suppressed stress reaction compared to the birds of both 18L and 20L groups. Especially, 12L birds had heavier final body weight and averaged daily weight gain (P < 0.05), higher BMD and BMC with longer and wider femur (P < 0.05), lower H/L ratio (P < 0.05), and more birds reached the observer during the touch test (P < 0.05) but spent shorter latency during the tonic immobility test (P < 0.05). Taken together, the data suggest that supplying 12 h as well as 16L of daily light improves performance and health while decreasing stress levels in broilers, making it a potentially suitable approach for broiler production.


Asunto(s)
Conducta Animal , Pollos , Relojes Circadianos , Fotoperiodo , Animales , Peso Corporal , Pollos/fisiología , Relojes Circadianos/fisiología , Miedo , Aumento de Peso , Conducta Animal/fisiología
3.
J Anim Sci Biotechnol ; 14(1): 66, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37127691

RESUMEN

BACKGROUND: Accumulating evidence from human trials and rodent studies has indicated that modulation of gut microbiota affects host physiological homeostasis and behavioral characteristics. Similarly, alterations in gut microbiota could be a feasible strategy for reducing aggressive behavior and improving health in chickens. The study was conducted to determine the effects of early-life cecal microbiota transplantation (CMT) on cecal microbial composition, brain serotonergic activity, and aggressive behavior of recipient chickens. METHODS: Chicken lines 63 and 72 with nonaggressive and aggressive behavior, respectively, were used as donors and a commercial strain Dekalb XL was used as recipients for CMT. Eighty-four 1-d-old male chicks were randomly assigned to 1 of 3 treatments with 7 cages per treatment and 4 chickens per cage (n = 7): saline (control, CTRL), cecal solution of line 63 (63-CMT), and cecal solution of line 72 (72-CMT). Transplantation was conducted via oral gavage once daily from d 1 to 10, and then boosted once weekly from week 3 to 5. At weeks 5 and 16, home-cage behavior was recorded, and chickens with similar body weights were assigned to paired aggression tests between the treatments. Samples of blood, brain, and cecal content were collected from the post-tested chickens to detect CMT-induced biological and microbiota changes. RESULTS: 63-CMT chickens displayed less aggressive behavior with a higher hypothalamic serotonergic activity at week 5. Correspondingly, two amplicon sequence variants (ASVs) belonging to Lachnospiraceae and one Ruminococcaceae UCG-005 ASV were positively correlated with the levels of brain tryptophan and serotonin, respectively. 72-CMT chickens had lower levels of brain norepinephrine and dopamine at week 5 with higher levels of plasma serotonin and tryptophan at week 16. ASVs belonging to Mollicutes RF39 and GCA-900066225 in 72-CMT chickens were negatively correlated with the brain 5-hydroxyindoleacetic acid (5-HIAA) at week 5, and one Bacteroides ASV was negatively correlated with plasma serotonin at week 16. CONCLUSION: Results indicate that CMT at an early age could regulate aggressive behavior via modulating the cecal microbial composition, together with central serotonergic and catecholaminergic systems in recipient chickens. The selected CMT could be a novel strategy for reducing aggressive behavior through regulating signaling along the microbiota-gut-brain axis.

4.
Poult Sci ; 102(6): 102635, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011470

RESUMEN

High ambient temperature (heat stress, HS) is one of the critical environmental factors causing gut microbiota dysbiosis and increasing gut permeability, consequently inciting neuroinflammation in humans and various animals including chickens. The aim of this study was to examine if a probiotic, Bacillus subtilis, can reduce neuroinflammation in heat-stressed broiler chickens. Two hundred and forty 1-d-old broiler chicks were randomly assigned to 48 pens among 4 treatments in 2 identical, thermal-controlled rooms (n = 12): Thermoneutral (TN)-regular diet (RD), TN-PD (the regular diet mixed with a probiotic at 250 ppm), HS-RD, and HS-PD. The probiotic diet was fed from d 1, and HS at 32°C for 10-h daily was applied from d 15 for a 43-day trial. Results showed that compared to the TN broilers, the HS broilers had higher hippocampal interleukin (IL)-6, toll-like receptor (TLR)4, and heat shock protein (HSP)70 at both mRNA and protein levels regardless of dietary treatment (P < 0.05). In addition, the HS-PD broilers had higher levels of hippocampal IL-8 (P < 0.05) than the TN-PD broilers. Within the HS groups, compared to the HS-RD broilers, the HS-PD broilers had lower levels of IL-6, IL-8, HSP70, and TLR4 (P < 0.05) in the hippocampus. Within the TN groups, the TN-PD broilers had lower IL-8 at both mRNA expressions and protein levels (P < 0.05) but higher TLR4 protein levels (P < 0.05) in the hippocampus as compared to the TN-RD broilers. These results indicate that dietary supplementation of the Bacillus subtilis-based probiotic may reduce HS-induced brain inflammatory reactions in broilers via the gut-brain-immune axis. These results indicate the potential use of probiotics as a management strategy for reducing the impact of HS on poultry production.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Alimentación Animal/análisis , Bacillus subtilis/metabolismo , Encéfalo/metabolismo , Pollos/genética , Dieta/veterinaria , Suplementos Dietéticos , Respuesta al Choque Térmico , Hipocampo , Calor , Proteínas HSP70 de Choque Térmico/genética , Interleucina-8/metabolismo , Enfermedades Neuroinflamatorias/veterinaria , Probióticos/farmacología , ARN Mensajero/metabolismo , Receptor Toll-Like 4/metabolismo
5.
PLoS One ; 17(11): e0276844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36322597

RESUMEN

Home cage aggression causes poor welfare in male laboratory mice and reduces data quality. One of the few proven strategies to reduce aggression involves preserving used nesting material at cage change. Volatile organic compounds from the nesting material and several body fluids not only correlate with less home cage aggression, but with more affiliative allo-grooming behavior. To date, these compounds have not been tested for a direct influence on male mouse social behavior. This study aimed to determine if 4 previously identified volatile compounds impact home cage interactions. A factorial design was used with cages equally split between C57BL/6N and SJL male mice (N = 40). Treatments were randomly assigned across cages and administered by spraying one compound solution on each cage's nesting material. Treatments were refreshed after day 3 and during cage change on day 7. Home cage social behavior was observed throughout the study week and immediately after cage change. Several hours after cage change, feces were collected from individual mice to measure corticosterone metabolites as an index of social stress. Wound severity was also assessed after euthanasia. Measures were analyzed with mixed models. Compound treatments did not impact most study measures. For behavior, SJL mice performed more aggression and submission, and C57BL/6N mice performed more allo-grooming. Wound severity was highest in the posterior region of both strains, and the middle back region of C57BL/6N mice. Posterior wounding also increased with more observed aggression. Corticosterone metabolites were higher in C57BL/6N mice and in mice treated with 3,4-dimethyl-1,2-cyclopentanedione with more wounding. These data confirm previous strain patterns in social behavior and further validates wound assessment as a measure of escalated aggression. The lack of observed treatment effects could be due to limitations in the compound administration procedure and/or the previous correlation study, which is further discussed.


Asunto(s)
Líquidos Corporales , Corticosterona , Animales , Masculino , Ratones , Agresión , Conducta Animal , Vivienda para Animales , Ratones Endogámicos C57BL , Comportamiento de Nidificación , Conducta Social , Sudor
6.
PLoS One ; 17(9): e0274179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36170274

RESUMEN

The aim of this study was to examine if synbiotics present similar efficiency to a common antibiotic used in poultry production under heat stress (HS) conditions. Two hundred and forty-one-day-old male Ross 708 broiler chicks were distributed among 3 treatments with 8 pens per treatment of 80 birds each for a 42-day trial. From day 15, birds were heat stressed (32°C for 9 h daily, HS) and fed the basal diet (CONT), the basal diet mixed with an antibiotic (Bactiracin Methylene Disalicylate) (0.05 g/kg of feed, BMD) or a synbiotic (0.5 g/kg of feed, SYN). The treatment effects on bird behavior, production performance, jejunal histomorphology, and cecal microbial ecology were examined. Behavioral observation was recorded by using instantaneous scan sampling technique. Production parameters were measured on day 14, 28, and 42. Cecal microbial populations of Escherichia coli and Lactobacilli and jejunal histomorphological parameters were measured at day 42. The results showed that, SYN birds exhibited more feeding and preening but less drinking and panting behaviors compared with both BMD and CONT birds (P < 0.05). The SYN birds also had higher body weight (BW) at both day 28 and 42 compared to CONT birds (P < 0.05). At the end of the experiment, the counts of Escherichia coli of SYN birds were at the similar levels of BMD but were lower than that of CONT birds (P < 0.05); while there were no treatment effects on the populations of Lactobacilli (P > 0.05). In addition, SYN birds had greater villus height compared with both CONT and BMD birds (P < 0.05). These findings suggest that the dietary synbiotic supplement has significant performance and welfare benefits, with the potential to be used as an alternative to antibiotics for poultry meat production, especially during hot seasons.


Asunto(s)
Infecciones por Escherichia coli , Trastornos de Estrés por Calor , Simbióticos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Antibacterianos/farmacología , Pollos , Dieta/veterinaria , Suplementos Dietéticos , Escherichia coli , Respuesta al Choque Térmico , Masculino
7.
Microorganisms ; 10(6)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35744601

RESUMEN

The gut microbiota plays an important role in regulating brain function, influencing psychological and emotional stability. The correlations between conspecific aggression, gut microbiota, and physiological homeostasis were further studied in inbred laying chicken lines, 63 and 72, which were diversely selected for Marek's disease, and they also behave differently in aggression. Ten sixty-week-old hens from each line were sampled for blood, brain, and cecal content. Neurotransmitters, cytokines, corticosterone, and heterophil/lymphocyte ratios were determined. Cecal microbiota compositions were determined by bacterial 16s rRNA sequencing, and functional predictions were performed. Our data showed that the central serotonin and tryptophan levels were higher in line 63 compared to line 72 (p < 0.05). Plasma corticosterone, heterophil/lymphocyte ratios, and central norepinephrine were lower in line 63 (p < 0.05). The level of tumor necrosis factor α tended to be higher in line 63. Faecalibacterium, Oscillibacter, Butyricicoccus, and Bacteriodes were enriched in line 63 birds, while Clostridiales vadin BB60, Alistipes, Mollicutes RF39 were dominated in line 72. From the predicted bacterial functional genes, the kynurenine pathway was upregulated in line 72. These results suggested a functional linkage of the line differences in serotonergic activity, stress response, innate immunity, and gut microbiota populations.

8.
Biomedicines ; 10(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35625892

RESUMEN

Nutrients and xenobiotics cross the blood-placenta barrier, potentially depositing in the fetal brain. The prenatal exposure affects the neuroendocrine and microbial development. The mechanism underlying maternal risk factors reprograming the microbiota-gut-brain axis with long-term effects on psychosocial behaviors in offspring is not clear. In humans, it is not possible to assess the nutrient or xenobiotic deposition in the fetal brain and gastrointestinal system for ethical reasons. Moreover, the maternal-fetal microbe transfer during gestation, natural labor, and breast-feeding constitutes the initial gut microbiome in the progeny, which is inevitable in the most widely utilized rodent models. The social predisposition in precocial birds, including chickens, provides the possibility to test behavioral responses shortly after being hatched. Hence, chickens are advantageous in investigating the ontogenetic origin of behaviors. Chicken embryos are suitable for deposition assessment and mechanistic study due to the accessibility, self-contained development, uniform genetic background, robust microbiota, and easy in vivo experimental manipulation compared to humans and rodents. Therefore, chicken embryos can be used as an alternative to the rodent models in assessing the fetal exposure effect on neurogenesis and investigating the mechanism underlying the ontogenetic origin of neuropsychiatric disorders.

9.
Poult Sci ; 101(7): 101925, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35613492

RESUMEN

Recent studies have revealed that fecal microbiota transplantation exerts beneficial effects on modulating stress-related inflammation and gastrointestinal health of the host. The aim of this study was to examine if cecal microbiota transplantation (CMT) presents similar efficiency in improving the health status of egg-laying strain chickens. Chicken lines 63 and 72 divergently selected for resistance or susceptibility to Marek's disease were used as CMT donors. Eighty-four d-old male recipient chicks (a commercial DeKalb XL layer strain) were randomly assigned into 3 treatments with 7 replicates per treatment and 4 birds per replicate (n = 7): saline (control, CTRL), cecal solution of line 63 (63-CMT), and cecal solution of line 72 (72-CMT) for a 16-wk trial. Cecal transplant gavage was conducted once daily from d 1 to d 10, then boosted once weekly from wk 3 to wk 5. The results indicated that 72-CMT birds had the highest body weight and ileal villus/crypt ratio among the treatments at wk 5 (P ≤ 0.05); and higher heterophil/lymphocyte ratios than that of 63-CMT birds at wk 16 (P < 0.05). 72-CMT birds also had higher levels of plasma natural IgG and Interleukin (IL)-6 at wk 16, while 63-CMT birds had higher concentrations of ileal mucosal secretory IgA at wk 5 and plasma IL-10 at wk 16 (P < 0.05), with a tendency for lower mRNA abundance of splenic IL-6 and tumor necrosis factor (TNF)-α at wk 16 (P = 0.08 and 0.07, respectively). In addition, 72-CMT birds tended to have the lowest serotonin concentrations (P = 0.07) with the highest serotonin turnover in the ileum at wk 5 (P < 0.05). There were no treatment effects on the levels of plasma corticosterone and testosterone at wk 16 (P > 0.05). In conclusion, early postnatal CMT from different donors led to different patterns of growth and health status through the regulation of ileal morphological structures, gut-derived serotonergic activities, peripheral cytokines, and antibody production in recipient chickens.


Asunto(s)
Pollos , Microbiota , Alimentación Animal/análisis , Animales , Ciego , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Masculino , Oviposición , Serotonina
10.
Cells ; 11(8)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35455949

RESUMEN

Tryptophan, as the sole precursor of serotonin, mainly derived from diets, is essential for neurodevelopment and immunomodulation. Gestational tryptophan fluctuation may account for the maternal-fetal transmission in determining neuroembryogenesis with long-lasting effects on psychological development. Personality disorders and social exclusion are related to psychosocial problems, leading to impaired social functioning. However, it is not clear how the fluctuation in mother-child transmission regulates the neuroendocrine development and gut microbiota composition in progeny due to that tryptophan metabolism in pregnant women is affected by multiple factors, such as diets (tryptophan-enriched or -depleted diet), emotional mental states (anxiety, depression), health status (hypertension, diabetes), and social support as well as stresses and management skills. Recently, we have developed a non-mammal model to rationalize those discrepancies without maternal effects. This perspective article outlines the possibility and verified the hypothesis in bully-victim research with this novel model: (1). Summarizes the effects of the maternal tryptophan administration on the neuroendocrine and microbial development in their offspring; (2). Highlights the inconsistency and limitations in studying the relationship between gestational tryptophan exposure and psychosocial development in humans and viviparous animals; and (3). Evidences that embryonic exposure to tryptophan and its metabolite modify bullying interactions in the chicken model. With the current pioneer researches on the biomechanisms underlying the bully-victim interaction, the perspective article provides novel insights for developing appropriate intervention strategies to prevent psychological disorders among individuals, especially those who experienced prenatal stress, by controlling dietary tryptophan and medication therapy during pregnancy.


Asunto(s)
Microbioma Gastrointestinal , Triptófano , Animales , Ansiedad , Pollos/metabolismo , Femenino , Humanos , Embarazo , Serotonina , Triptófano/metabolismo
11.
Animals (Basel) ; 12(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35405859

RESUMEN

Intestinal microbiota functions such as an endocrine organ to regulate host physiological homeostasis and behavioral exhibition in stress responses via regulating the gut-brain axis in humans and other mammals. In humans, stress-induced dysbiosis of the gut microbiota leads to intestinal permeability, subsequently affecting the clinical course of neuropsychiatric disorders, increasing the frequency of aggression and related violent behaviors. Probiotics, as direct-fed microorganism, have been used as dietary supplements or functional foods to target gut microbiota (microbiome) for the prevention or therapeutic treatment of mental diseases including social stress-induced psychiatric disorders such as depression, anxiety, impulsivity, and schizophrenia. Similar function of the probiotics may present in laying hens due to the intestinal microbiota having a similar function between avian and mammals. In laying hens, some management practices such as hens reared in conventional cages or at a high stocking density may cause stress, leading to injurious behaviors such as aggressive pecking, severe feather pecking, and cannibalism, which is a critical issue facing the poultry industry due to negative effects on hen health and welfare with devastating economic consequences. We discuss the current development of using probiotic Bacillus subtilis to prevent or reduce injurious behavior in laying hens.

12.
Nutrients ; 14(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35277020

RESUMEN

Maternal metabolic disorder during early pregnancy may give rise to emotional and behavioral disorders in the child, vulnerable to bullying. Placental tryptophan fluctuation consequently disrupts offspring gut microbiome and brain neurogenesis with long-lasting physiological and social behavioral impacts. The aim of this study was to examine the hypothesis that the excess gestational tryptophan may affect children's mental and physical development via modifying the microbiota-gut-brain axis, which lays the foundation of their mental status. Chicken embryo was employed due to its robust microbiota and independence of maternal influences during embryogenesis. The results indicated that embryonic tryptophan exposure reduced body weight and aggressiveness in the male offspring before and during adolescence. Additionally, the relative gut length and crypt depth were increased, while the villus/crypt ratio was decreased in tryptophan treated roosters, which was corresponding to the changes in the cecal microbiota composition. Furthermore, the catecholamine concentrations were increased in tryptophan group, which may be associated with the alterations in the gut microbiome and the gut-brain axis's function. These changes may underlie the sociometric status of bullying; clarify how gestational tryptophan fluctuation compromises bullying and provide a strategy to prevent bullying by controlling dietary tryptophan and medication therapy during pregnancy.


Asunto(s)
Acoso Escolar , Víctimas de Crimen , Microbiota , Animales , Eje Cerebro-Intestino , Embrión de Pollo , Pollos/metabolismo , Femenino , Humanos , Masculino , Placenta/metabolismo , Embarazo , Triptófano/metabolismo
13.
Animals (Basel) ; 11(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34827759

RESUMEN

Heat stress is one of the most detrimental environmental challenges affecting the biological process and the related production performance of farm animals, especially in poultry. Commercial laying hens have been bred (selected) for high egg production, resulting in increased sensitivity to heat stress due to breeding-linked metabolic heat production. In addition, laying hens are prone to heat stress due to their inadequate species-specific cooling mechanisms resulting in low heat tolerance. In addition, hens have no sweat glands and feathering covers almost their entire body to minimize body heat loss. The poultry industry and scientists are developing cooling methods to prevent or reduce heat stress-caused damage to chicken health, welfare, and economic losses. We have designed and tested a cooling system using perches, in which chilled water (10 °C) circulates through a conventional perch passing through the layer cages to offer the cooling potential to improve hen health, welfare, and performance during acute and chronic periods of heat stress (35 °C). This review summarizes the outcomes of a multi-year study using the designed cooled perch system. The results indicate that conducting heat from perching hens directly onto the cooled perch system efficiently reduces heat stress and related damage in laying hens. It provides a novel strategy: perches, one key furnishment in cage-free and enriched colony facilities, could be modified as cooling devices to improve thermal comfort for hens during hot seasons, especially in the tropical and subtropical regions.

14.
Animals (Basel) ; 11(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34359169

RESUMEN

This study was to investigate the effects of Bacillus subtilis on production performance and bone pathophysiological characteristics of layers. Twenty-four 48-week-old Lohmann Pink-shell laying hens were randomly divided into two groups: a basic diet (control) and the basic diet mixed with Bacillus subtilis (0.5 g/kg) for a 60-day trial. Statistically, independent-sample t-test was used to assess the treatment differences. The results showed that Bacillus subtilis supplementation improved the percent of marketable eggs (p < 0.05) with reduced numbers of broken and soft-shelled eggs but had no effects on egg weight, height of albumen, yolk color, and Haugh unit (p > 0.05). Bacillus subtilis supplement also elevated maximum load (p = 0.06), maximum stress (p = 0.01), stiffness (p < 0.01), and Young's modulus (p < 0.01) but suppressed maximum strain (p = 0.06) in the femur. In addition, compared with control birds, phosphorous concentration (p < 0.01) was reduced in serum at day 61 but increased in the femur (p < 0.05) in Bacillus subtilis fed birds. Bacillus subtilis fed birds also had lower magnesium concentrations in both femur (p = 0.04) and feces (p = 0.09). Furthermore, Bacillus subtilis increased plasma estrogen concentration (p = 0.01) and femur TNF receptor superfamily member 11b (OPG) expression (p < 0.05) but reduced plasma IL-1 (p < 0.01) and TNF-α (p < 0.01) concentrations. These results indicate that Bacillus subtilis could be used as a health promotor to reduce overproduction-induced inflammation and associated bone damage and to increase marketable egg production. The data provide evidence for developing a management strategy to use Bacillus subtilis as a feed additive to improve marketable egg production and health and welfare status of laying hens.

15.
Neuroscience ; 473: 66-80, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34425158

RESUMEN

The placenta is the primary source of serotonin (5-HT) for fetal development, programming fetal neural wiring in humans and other mammals. The fluctuation in maternal 5-HT affects fetal neurogenesis with life-long consequences, however, its mechanisms have not been well known. The chicken embryo, independent of maternal neurohormonal influence, may offer an ideal model for studying the mechanisms of prenatal 5-HT exposure altering postnatal physiological homeostasis and behavioral exhibition. To investigate the fine-tuning of 5-HT to the early embryonic neurodevelopment, 10 µg and 20 µg 5-HT were secretively injected to chicken embryos before incubation. 5-HT exposure mainly affected the neural development in the pons and midbrain, altered the serotoninergic and dopaminergic (DAergic) neuronal morphology, nucleus distribution, and their metabolisms and related gene expressions. The comprehensive effect of 5-HT exposure was not dosage-dependent but the working pathways differed, 10 µg 5-HT exposure reduced 5-HT turnover rate, increased 5-HT 1a receptor expression, and facilitated the ventral tegmental area neuronal development; while 20 µg 5-HT exposure increased the serotoninergic and DAergic neurotransmission and enhanced serotoninergic regulation to the hypothalamus. These findings indicate that the 5-HT exposure effect can be achieved via different paths by modifying the embryonic serotonergic (5-HTergic) and DAergic systems and altering fetal 5-HTergic influence on the thalamocortical circuit and hypothalamic-pituitary-adrenal axis. These results may offer a novel sight for understanding the function of 5-HT during neurodevelopment and raise the possibility for using selective 5-HT reuptake inhibitors to regulate emotional and mental wellness during early pregnancy and possible risks of complications for babies.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Serotonina , Animales , Embrión de Pollo , Pollos , Femenino , Desarrollo Fetal , Humanos , Sistema Hipófiso-Suprarrenal
16.
Front Vet Sci ; 8: 695948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307534

RESUMEN

Aggression among group housed male mice continues to challenge laboratory animal researchers because mitigation strategies are generally applied at the cage level without a good understanding of how it affects the dominance hierarchy. Aggression within a group is typically displayed by the dominant mouse targeting lower ranking subordinates; thus, the strategies for preventing aggression may be more successful if applied specifically to the dominant mouse. Unfortunately, dominance rank is often not assessed because of time intensive observations or tests. Several correlates of dominance status have been identified, but none have been directly compared to home cage behavior in standard housing. This study assessed the convergent validity of three dominance correlates (urinary darcin, tube test score, preputial gland to body length ratio) with wound severity and rankings based on home cage behavior, using factor analysis. Discriminant validity with open field measures was assessed to determine if tube test scores are independent of anxiety. Cages were equally split between SJL and albino C57BL/6 strains and group sizes of 3 or 5 (N = 24). Home cage behavior was observed during the first week, and dominance measures were recorded over the second. After controlling for strain and group size, darcin and preputial ratio had strong loadings on the same factor, which was a significant predictor of home cage ranking showing strong convergent validity. Tube test scores were not significantly impacted by open field data, showing discriminant validity. Social network analysis revealed that despotic power structures were prevalent, aggressors were typically more active and rested away from cage mates, and the amount of social investigation and aggression performed by an individual were highly correlated. Data from this study show that darcin and preputial ratio are representative of home cage aggression and provide further insight into individual behavior patterns in group housed male mice.

17.
Animals (Basel) ; 11(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064126

RESUMEN

The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.

18.
PLoS One ; 16(5): e0251416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33989318

RESUMEN

Excessive home cage aggression often results in severe injury and subsequent premature euthanasia of male laboratory mice. Aggression can be reduced by transferring used nesting material during cage cleaning, which is thought to contain aggression appeasing odors from the plantar sweat glands. However, neither the composition of plantar sweat nor the deposits on used nesting material have been evaluated. The aims of this study were to (1) identify and quantify volatile compounds deposited in the nest site and (2) determine if nest and sweat compounds correlate with social behavior. Home cage aggression and affiliative behavior were evaluated in 3 strains: SJL, C57BL/6N, and A/J. Individual social rank was assessed via the tube test, because ranking may influence compound levels. Sweat and urine from the dominant and subordinate mouse in each cage, plus cage level nest samples were analyzed for volatile compound content using gas chromatography-mass spectrometry. Behavior data and odors from the nest, sweat, and urine were statistically analyzed with separate principal component analyses (PCA). Significant components, from each sample analysis, and strain were run in mixed models to test if odors were associated with behavior. Aggressive and affiliative behaviors were primarily impacted by strain. However, compound PCs were also impacted by strain, showing that strain accounts for any relationship between odors and behavior. C57BL/6N cages displayed the most allo-grooming behavior and had high scores on sweat PC1. SJL cages displayed the most aggression, with high scores on urine PC2 and low scores on nest PC1. These data show that certain compounds in nesting material, urine, and sweat display strain specific patterns which match strain specific behavior patterns. These results provide preliminary information about the connection between home cage compounds and behavior. Salient compounds will be candidates for future controlled studies to determine their direct effect on mouse social behavior.


Asunto(s)
Vivienda para Animales , Ratones , Agresión , Animales , Conducta Animal , Masculino , Ratones/fisiología , Ratones/orina , Ratones Endogámicos C57BL , Comportamiento de Nidificación , Odorantes/análisis , Conducta Social , Sudor/química
19.
Animals (Basel) ; 11(2)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562225

RESUMEN

The aim of this study was to evaluate the effect of a synbiotic containing a probiotic (Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, and Lactobacillus reuteri) and a prebiotic (fructooligosaccharides) on fear response, memory assessment, and selected stress indicators in broilers subjected to heat stress. A total of 360 1-day-old Ross 708 chicks were evenly divided among three treatments: a basal diet mixed with a synbiotic at 0 (G-C), 0.5 (G-0.5X), and 1.0 (G-1.0X) g/kg. After 15 d, the broilers were exposed to 32 °C for 9 h daily until 42 d. The object memory test was conducted at 15 day; touch, novel object, and isolation tests were conducted at 35 day; tonic immobility (TI) took place at 41 day. At 42 day, plasma corticosterone and tryptophan concentrations and heterophile/lymphocyte (H/L) ratios were measured. Compared to controls, synbiotic-fed broilers, regardless of concentration, had a shorter latency to make the first vocalization, with higher vocalization rates during the isolation test (p = 0.001). the G-1.0 group had the lowest H/L ratio (p = 0.001), but higher plasma tryptophan concentrations and a greater number of birds could reach the observer during the touch test (p = 0.001 and 0.043, respectively). The current results indicate that the synbiotic can be used as a growth promoter to reduce the fear response and stress state of heat-stressed broilers.

20.
Poult Sci ; 99(11): 5252-5260, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33142440

RESUMEN

Heat stress as an environmental stressor causes abnormal bone remodeling and microarchitectural deterioration. The objective of this study was to investigate the effects of a Bacillus subtilis-based probiotic on bone mass of broilers subjected to cycling high ambient temperature. One hundred and twenty 1-day-old Ross 708 male broiler chicks were randomly assigned to 2 dietary treatments (12 pens per treatment): control diet and the control diet plus 250-ppm probiotic consisting of 3 strains of Bacillus subtilis. Room temperature was gradually decreased from 35°C on day 1 by 0.5°C/d until day 15, when ambient temperature was increased from 28°C to 32°C for 10 h (07:00 h-17:00 h) daily until day 44. Samples of blood, leg bones (tibia and femur), and brains (raphe nuclei and hypothalamus) were collected at day 43, while latency to lie test was conducted at day 44. Compared with controls, probiotic supplementation increased bone mineral content, weight, size, weight to length index, and reduced robusticity index in the tibia and femur (P < 0.05) of broilers subjected to heat stress. Serum concentrations of c-terminal telopeptide of type I collagen (CTX) were reduced (P = 0.02) by the probiotic supplementation, while ionized calcium, phosphate, and osteocalcin were not affected (P > 0.05). Moreover, tumor necrosis factor-α (TNF-α) in probiotic fed broilers was decreased (P = 0.003) without changes of plasma interleukin (IL)-6, IL-10, interferon-γ, and corticosterone concentrations. There were no treatment effects on the concentrations of peripheral serotonin and central serotonin and catecholamines (norepinephrine, epinephrine, and dopamine) as well as their metabolites. These results may indicate that dietary supplementation of Bacillus subtilis-based probiotic increases bone growth in broilers under a cyclic heating episode probably via inhibition of bone resorption, resulting from downregulation of the circulating TNF-α and CTX. Dietary probiotic supplementation may be a management strategy for increasing skeletal health of broilers under hot weather.


Asunto(s)
Bacillus subtilis , Desarrollo Óseo , Pollos , Calefacción , Inflamación , Probióticos , Alimentación Animal/análisis , Animales , Bacillus subtilis/fisiología , Pollos/crecimiento & desarrollo , Pollos/microbiología , Dieta/veterinaria , Inflamación/microbiología , Inflamación/veterinaria , Masculino , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...